

MH273 Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

MH273 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and built-in pull high resistance output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

MH271 is rated for operation between the ambient temperatures -40° C and $+85^{\circ}$ C for the E temperature range. and -40° C to 125° C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

- DMOS Hall IC Technology.
- 10K ohm pull up resistor is integrated.
- Operation range from 2.5V to 26V.
- Omni polar, output switches with absolute value of North or South pole from magnet.
- Reverse bias protection on power supply pin.
- High Sensitivity for reed switch replacement applications.
- Low sensitivity drift in crossing of Temp range.
- High ESD Protection, HBM>±4KV(min)
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- Solid state switch.
- Limit switch.
- Magnet proximity sensor
- Position sensor
- Speed sensor
- Rotation sensor
- Counting sensor

Ordering Information

Part No.	Temperature Suffix	Package Type
MH273KUA	K (-40°C to $+ 125$ °C)	UA (TO-92S)
MH273EUA	E (-40°C to $+ 85$ °C)	UA (TO-92S)
MH273KSO	K (-40°C to $+ 125$ °C)	SO (SOT-23)
MH273ESO	$E(-40^{\circ}C \text{ to} + 85^{\circ}C)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit	
Supply voltage,(<i>V</i> _{DD})			28	V	
Output Voltage, (Vout)			28	V	
Reverse Voltage, (VDD / Vout)			-28/-0.3	V	
Output current, (<i>Isink</i>)			25	mA	
O Transford	(T) "E" Class		$-40 \sim +85$	°C	
Operating Temperature Range, (T_A)		"K" Class	-40 ~ +125	°C	
Storage temperature Range, (<i>Ts</i>)			$-55 \sim +150$	°C	
Maximum Junction Temp,(<i>T</i> _J)			150	°C	
	(θ_{JA}) UA/ SO		206 / 543	°C/w	
Thermal Resistance	(<i>θJC</i>) UA/ SO		148 / 410	°C/w	
Package Power Dissipation, (PD)		606 / 230	mW		

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters : $T_A = +25 \,^{\circ}C, V_{DD} = 12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		26.0	V
Supply Current,(<i>IDD</i>)	B <bop< td=""><td></td><td>2.5</td><td>5.0</td><td>mA</td></bop<>		2.5	5.0	mA
Output Saturation Voltage, (VDSON)	Iout=20mA,B>BOP		300	500.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="<math">20V</brp,>			10.0	uA
Power-On Time, (T_P)				50	uS
Output Switch Time, (T_{SW})				150	uS
Output Switch Frequency, (F_{SW})		3			kHz
Output Rise Time, (<i>T</i> _R)	$R_L=1K\Omega$, $C_L=20pF$		0.04	0.45	uS
Output Fall Time, (<i>T_F</i>)	$R_L=1k\Omega; C_L=20pF$		0.18	0.45	uS
Electro-Static Discharge	HBM	4			KV
Pull-up Resistor, (R_A)			10		KΩ
Operate Point, BOPS(BOPN)	B>Bops(B <bopn), on<="" td="" vout=""><td>50(-110)</td><td></td><td>110(-50)</td><td>Gauss</td></bopn),>	50(-110)		110(-50)	Gauss
Release Point, BRPS(BRPN)	B <brps(b>Brpn), Vout Off</brps(b>	30(-90)		90(-30)	Gauss
Hysteresis, (BHYS)	BOP - BRP		20		Gauss

Typical application circuit

Sensor Location, Package Dimension and Marking UA Package

Hall Chip location

- Pin 1 V_{DD} ;
- Pin 2 Output;
- Pin 3 GND
- 2. Controlling dimension: mm
- **3**. Lead thickness after solder plating will be 0.254mm maximum

-0.7